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Conformational Properties of Molecules by
ab Initlo Quantum Mechanical Energy
Minimization
by L. Pedersen*

The recent literature on the determination of minimum energy conformations by ab initio quantum
mechanical techniques is reviewed. The availability of computer-coded analytical first and second deriv-
atives of the Hartree-Fock energy makes possible calculations that will be of significant assistance in
structure determination of molecules. A short review of recent progress in empirical energy minimization
and molecular dynamics is provided.

Introduction
The combined advances in computer technology and

numerical analysis since the early 1950s are making pos-
sible the fulfillment of the long standing promise that
quantum mechanics has held for biological areas of
chemistry. Here we shall concentrate especially on a
nonexhaustive review of representative recent studies
that utilize ab initio quantum mechanical techniques to
determine partially or fully energy minimized geome-
tries in molecules.

General Considerations: Theory
The usual approach (1,2) for finding the energy for a

molecular system is first to make the Born-Oppenhei-
mer approximation, and second to assume the Hartree-
Fock theory in which the simplest useful wave function,
'I, for an n-electron system, is the single determinant of
the occupied molecular orbitals {'p}

P = ql(l) 1(2) 2(3) ... 4'm(n) (1)
The molecular orbitals are they taken as a truncated
expansion of the basis functions {4}:

4J = I Cr, 4cr (2)
The 4 are normally in turn chosen to be expansions of
Gaussian functions in which the expansion coefficients
and Gaussian exponents are fitted to accurate calcula-
tions using Slater orbitals. Among the most widely used
basis sets are the STO-3G and 4-31G basis sets (3,4)
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developed by Pople and co-workers. The latter split val-
ence set is of approximate double zeta quality. The ex-
pansion coefficients are then determined by solving the
Roothaan equations and the energy is determined for a
fixed nuclear configuration. Open shells require special
modifications. The energy (for fixed nuclei) can be con-
siderably improved by increasing the mathematical com-
plexity of the molecular orbital expansion and/or by
performing configuration interaction (CI) (5) or an equiv-
alent procedure. One kind of CI wave function involves
writing the total wave function as an expansion of de-
terminants generated by placing the electrons in molec-
ular orbitals unoccupied in the simplest description:

*Tot = EA, PI (3)
The coefficients A, are then determined by the use of the
variational principle and the electrostatic Hamiltonian
and can thus be written as the solution of the matrix
equation

HA = AE (4)
The self-consistent field (SCF) energy for the multi-

configuration wave function can be written (6):

E = LijYr,sEr CriCsj (rihlS)
+ 2 ijkl Fij,klIrstu CriCsiCtkCulJJrstu + V,n (5)

where i,j,k,1 are MO labels, ris,t,u are AO labels. The
one-electron Hamiltonian is h; thus,

(6)(rlhls) = (4,Ih/4X)
and the two-electron integrals are given by
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JrstZu = 4),. (1) 4(1) / rj /1 ,t (2) 4),, (2)) (7)

The coefficients y ij and Fii,kl are vector coupling coeffi-
cients defined by the solution A to the CI matrix. If we
have only a single determinant of doubly occupied MO's,
then

=ii 2

Fii,jj. 4
i= -2

and all other coefficients vanish.
Great progress has been made in recent years toward

finding and coding analytical expressions for the first and
second derivatives of the general multiconfigurational en-
ergy; the most important initial contribution was made
by P Pulay (7). The energy gradient approach of Pulay
provides a fast interaction algorithm by which the forces
f on the atoms

/ = -dE/aQi (8)

are allowed to approach an equilibrium value by adjusting
the nuclear positions until the net forces are zero. Pulay
did not work out analytical second derivatitives (which
lead to force constants; this was first done by Pople et
al. (8), who also found analytical first and second deriv-
atives for the spin-orbital formulation of the Hartree-
Fock energy as well as analytical first derivatives for
second-order Moller-Plesset perturbation energy Ana-
lytical energy first derivatives for the configuration in-
teraction wave function were first provided by Kato and
Morokuma (9), Goddard et al. (10,11) and Krishnan et al
(12). The Schaefer group (13) has very recently provided
formulas for analytical second derivatives. In addition to
the definitive review by Pulay (6), the interested reader
may wish to consult Morokuma (14) and Schafer (15) for
recent updates.

Calculations: Complete
Optimization
The immediate goals ofmost quantum chemical studies

are to be able to determine correct geometries and force
constants for regions of a molecule's (or "supermole-
cule's") potential energy surface near local minima or
saddle points (transition states). As always one ulti-
mately wishes to examine systems of broad interest to
all kinds of chemists. An example of the current state of
affairs is given by Pulay et al. (16). In this paper a 4-
21G basis set (17), similar in quality to a 3-21G basis
(18), is used in combination with energy-gradient tech-
niques and a few experimental vibrational frequencies to
determine scaled force fields for glyoxal, acrolein, buta-
diene, formaldehyde and ethylene. Local valence internal
coordinates (17) which minimize the coupling force con-
stants are chosen. Qualitative infrared intensities are
computed. Pulay et al. (16) conclude with an optimistic
comment: "It now seems certain that, with the help of

information provided by the ab initio calculations, the
force fields and normal vibrations of all reasonably simple
organic molecules will be understood in the near future,
after four decades of intensive experimental
investigations:"

Documentation for this optimism is provided in a sub-
sequent paper (19) with a completely theoretical predic-
tion of the force field and vibrational spectra of pyridine.
A number of ab initio gradient force-field calculations
have now been performed mainly with the 4-21G basis:
pyrimidine, pyridine, pyrazine and s-triazine (20); 1,4-
cycloheptadiene, 1,3-cycloheptadiene and 1,3,5-cyclohep-
tatriene (21); furan, pyrrole and thiophene (22), bicyclo
(2.1.0)pentane (23), glycine (24), glycine methyl ester (25),
1,2-methylhydrazine (26), beryllocene (27), N-acetyl N'-
methyl amides of glycine (28) and alanine (29), tri-
cyclohexane, chair and boat; norbornane, quadricyclane,
cubane, cyclopropane, cyclobutane and cyclohexane (30),
acetylcholine (15), calicene (31), azxirene, oxinene, and
thiirene (32), cyclobutadiene (33) (6-31G*), 1,3-dioxol-2-
one, -thione and -onium and analogous 1,3-dithioles (34)
(extended variable basis sets), the neutral and protonated
DNA bases thymine, cytosine, adenine and guanine (35)
(STO-3G optimization followed by single point 4-31G cal-
culations), 1,2,4-triazole (36) (3-21G) and acetamide, flu-
roacetamide, formamide oxine and 1,2-diformyl hydrazine
(37) (3-21G), 2-,3-,4- hydroxypyridine (38) (3-21G). Schafer
(15) describes several cases in which energy-gradient cal-
culations were essential in proper structure assignment:
glycine (24) and methyl ester of glycine (25). Thus, en-
ergy-gradient calculations are proving to be an extremely
useful tool when combined with complementary experi-
mental studies; a recent structure determination for gas-
eous norbornane (39) ultilized electron diffraction,
microwave, Raman, infrared, and gradient calculations.

Energy-gradient calculations may be used to probe the
transition-state regions of potential energy surfaces; the
long-range implications to catalysis cannot be overesti-
mated. Morokuma (14) has reviewed one way to proceed
for reactions having heavy atoms. An effective core po-
tential (ECP) model (40,41) which depends explicitly only
on the valence electrons may be utilized. Such a model
has been carefully tested by Obara et al. (42) and been
shown to give good agreement for equilibrium and tran-
sition state geometries with all electron split valence ab
initio calculations. Kitaura et al. (43) have examined the
sample catalytic reaction of molecular hydrogen with two-
coordinate platinum (0) and palladium (0) complexes:

Pt(PH:)02 + H., - Pt (H)2(PH:3)2

by the ECP energy-gradient method using all single and
double excitations. The geometry of a transition state,
the activation barrier height and detailed mechanistic
insight results from such calculations.
The potential importance of energy-gradient methods

to structure-reactivity correlations is illustrated by the
case of acetylcholine (15):
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CH3C'02CH2CH2 N(CH3)3

The C1-O2 bond distance is found to be considerably longer
in AC than in methyl acetate (1.391 A to 1.359A) with a
corresponding reduction in the electron density (thus in-
creased facility for nucleophilic attack) at Cl.

Calculations: Partial Optimization
A large number of calculations of biological interest

have been performed that have used only partial geom-
etry optimization due mostly to restrictions of computer
time availability We will review some of the most recent
of these here. Cheney and Christoffersen (44,45) have
utilized a molecular fragments ab initio method based
on floating spherical Gaussian orbitals (FSGO) (46) to
characterize the electronic structure and preferred con-
formation of a series of antiallergy agents. For oxamic
acid derivatives, the biological activity A as represented
by the dose to produce 50% of the anaphylactic response
in a standard test (ED50) is found to be correlated with
the lowest unoccupied molecular orbital energy:

A = -ln ED5o = -64.4 +28.0

Thus charge transfer is implicated as a dominant recep-
tor-drug interaction. For dioxamic acid derivative, how-
ever, potency is greatly enhanced and a further receptor-
drug interaction involving the 3-NHCOCO2H group is
postulated. The same ab initio molecular fragment ap-
proach has also been used to develop a model for morphine
and naloxone binding (47) at the opioid receptor and to
develop a quantitative structure-activity relationship
(QSAR) for the receptor binding and aryl hydrocarbon
hydroxylase (AHH) induction for a series of dibenzo-p-
dioxins and dibenzofurans (48,49). A hypothesis based
on correlation of binding to cytosol protein with the sec-
ond lowest unoccupied molecular orbital (4b,g in TCDD)
is that a charge-transfer mechanism contributes signif-
icantly to the receptor-toxin complex stability (48). The
QSARs developed, however, show that receptor binding
and AHH are affected differently by lateral substituent
binding (49). The ab initio FSGO fragment model has
been further approximated and reparameterized so as to
be useful for very large systems by introducing pseu-
dopotentials for the molecular fragments (50), and the
method is tested with a calculation on formamide.

Base-stacking interactions in highly thermophilic bac-
teria have been studied by ab initio 4-31G calculations
(51). The specific mutagenicity of 06 alkylated guanines
is explained in an MINDO/3 (52) geometry optimized
STO-3G study of hydrogen-bond base-pair interactions
(53). STO-3G geometry optimization followed by 4-31G
point calculations has been used to study preferred con-
formations in acetamide, N-methylformamide and N-
methylacetamide (54). The possible disruptive role of F

with RNA and DNA has been examined by a 4-31G ge-
ometry optimization for F- uracil interaction (55). The
preferred conformations of a number of polychlorinated
biphenyls (PCBs) has been determined by STO-3G cal-
culations (56) and a consequent binding model proposed
to explain PCB and dioxin cytosol binding (57). The hex-
ahalobenzenes (C,F(,, CXCl6, C6Br6, and C6I6) have been
shown (58) to be planar in a double-zeta quality calcu-
lation (444 basis functions for C616().

Another Approach: Molecular
Mechanics via Empirical Force Field
Predating ab initio energy minimization has been a

large body of study called molecular mechanics which
utilizes semiempirical force fields. Basically the idea is to
define a potential energy function for the internal energy
of a molecule that can be systematically parameterized
to reproduce a certain spectroscopic, structural and/or
thermodynamic data. An example of such an internal
energy function which leads to a valence force field is (59)

E = >{Db[l - ea(b-bo)]2-Db} + 1/2HO(O -oo)2
+ 1/2jH:,(1 + s cos n4O) + 1/21HxX2
+ 1,>YFbb' (b - bo)(b' - bo0)
+ >EFee(O - 00)(0' - HO)
+ EEFbo(b - bo)(0 -O)
+ EEF4,00 Cos 4(0 - 00)(0 - 00)
+ 3EFxxXX' + E[2(r*Ir)9
- (r*/r)6]+ qiqlr (9)

where the first term accounts for anharmonic bond
stretches, the second term angle bends, the third term
torsional energy variation, the fourth term allows for out-
of-plane motion for planar fragments, terms five through
nine are cross terms that account for coupling of different
modes, and the last three terms account for nonbonded
interactions. The subscript zero establishes an equilib-
rium or standard value. Algorithms based on steepest
descent or Newton-Raphson methods are then used to
find local energy minima and force constant estimates for
subsequent computation of thermodynamic properties
(60,61). The monograph by Burkert and Allinger (60)
provides an excellent summary of the state of molecular
mechanics into 1982. The computer programs MM1 (62,63)
and MM2 (64) have been especially widely used for con-
formational studies on moderately sized molecules.
An important question relates to which is likely to

provide the most accurate representation of nature, ab
initio or molecular mechanics calculations. Considera-
tions for a comparison on a test molecule are amount of
computer time, level of basic set and/or degree of post-
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SCF calculation, and how similar the test molecule is to
the molecule set used to parameterize the force field for
the molecular mechanics calculation. In one such test
(39), a completely relaxed 4-21G calculation for norborane
provided a significantly better model geometry for struc-
ture determination than did a molecular mechanics model
(65).

Understanding protein structure and function through
energy minimization and molecular dynamics (MD) con-
stitutes an area of intense activity Developments for en-
ergy minimization strategies of the Scheraga group at
Cornell are summarized in a recent publication (66). The
potential importance of array processor hardware to MD
is emphasized by Berens and Wilson (67). The Karplus
group at Harvard has recently announced the availability
of a general macromolecular MD program CHARMM
(68). Recent papers which give a preview of what is pos-
sible with molecular dynamics on proteins are provided
by calculation of motion about the X-ray structure of
bovine pancreatic trypain inhibitor (69-71). A picture
emerges from following atomic motion for 132 psec (71)
that the atoms of the macromolecule vibrate about a con-
formation for a length of time and then "jump" over a
finite energy barrier to a new conformational region. The
excitement of this new area of computer chemistry is
succinctly captured in the review by McCammon and
Karplus (72).

Conclusion
There would appear to be reason for optimism that

quantum mechanics is on the threshold of providing a
framework for understanding the mechanistic details of
biological chemistry The application of systematic energy
minimization techniques to ab initio calculations at the
split valence basis level will likely become an important
supplementary method for study of molecules of useful
size.
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